Вивчаються задачі безумовної мінімізації опуклих функцій для знаходження мінімальних за Lp-нормою лінійних сплайнів для випадків p ≥ 1 та 1 < p ≤ 2. Якщо p ≥ 1, то використовується негладка функція, а якщо 1 < p ≤ 2 – гладка функція. Показано, що при певному виборі параметра p оптимізаційні задачі породжують відомі методи – метод найменших квадратів, метод найменших модулів та мінімаксний чебишевський метод. Наведено властивості розв'язків задачі для випадку 1 < p ≤ 2.
Изучаются задачи безусловной минимизации выпуклых функций для нахождения минимальных в Lp-норме линейных сплайнов для случаев p ≥ 1 и 1 < p ≤ 2. Если p ≥ 1, то используется негладкая функция, а если 1 < p ≤ 2 – гладкая функция. Показано, что при определенном выборе параметра p оптимизационные задачи порождают известные методы – метод наименьших квадратов, метод наименьших модулей и минимаксный чебышевский метод. Приведены свойства решений задачи для случая 1 < p ≤ 2
Problems of unconstrained minimization of convex functions for finding the minimal linear splines in Lp-norm for cases p ≥ 1 and 1 < p ≤ 2 are investigated. If p ≥ 1, then the non-smooth function is used, and if 1 < p ≤ 2 then the smooth function is used. It is shown, that with a certain choice of parameter p , the optimization problems generate the known methods: the method of least squares, the method of least absolute deviations, and the Chebyshev minimax method. The properties of solutions of problems with 1 < p ≤ 2 are given.