The purpose of this paper is to study the stress state near the crack that initiates at the inclusion when subjected to a longitudinal shear wave. The formulated problem is reduced to a system of singular integro-differential equations with fixed singularities with respect to the unknown voltage surges and displacements on the surface of a defect. To solve this system, a similar collocation method is used. There have been shown dependences of the change in the dimensionless values of the stress intensity factors (SIF) on the dimensionless value of the wave number in the case of wave propagation at different angles.
Метою цієї роботи є дослідження напруженого стану біля тріщини, що відходить від включення під впливом хвилі поздовжнього зсуву. Сформульована задача приведена до системи сингулярних інтегро-диференціальних рівнянь з нерухомими особливостями відносно невідомих стрибків напружень і переміщень на поверхні дефекту. Для розв’язання цієї системи використовується аналогічний колокаційний метод. Показано залежності зміни безрозмірних значень коефіцієнтів інтенсивності напружень (КІН) від безрозмірного значення хвильового числа у випадку поширення хвилі під різними кутами.
Целью данной работы является исследование напряженного состояния возле трещины, которая отходит от включения при воздействии волной продольного сдвига. Сформулированная задача приведена к системе сингулярных интегро-дифференциальных уравнений с неподвижными особенностями относительно неизвестных скачков напряжений и перемещений на поверхности дефекта. Для решения этой системы используется аналогичный коллокационный метод. Показаны зависимости изменения безразмерных значений коэффициентов интенсивности напряжений (КИН) от безразмерного значения волнового числа в случае распространения волны под разными углами.