Показати простий запис статті
dc.contributor.author |
D’Angeli, D. |
|
dc.contributor.author |
Donno, A. |
|
dc.date.accessioned |
2019-06-20T03:07:43Z |
|
dc.date.available |
2019-06-20T03:07:43Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.isbn |
2000 Mathematics Subject Classification: 20E08, 20F65, 20F10, 05C25, 43A85, 43A90. |
|
dc.identifier.issn |
1726-3255 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/157371 |
|
dc.description.abstract |
We study the Basilica group B, the iterated monodromy group I of the complex polynomial z
2 + i and the Hanoi
Towers group H(3). The first two groups act on the binary rooted
tree, the third one on the ternary rooted tree. We prove that the
action of B, I and H(3) on each level is 2-points homogeneous with
respect to the ultrametric distance. This gives rise to symmetric
Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by
using the strong property that the rigid stabilizers of the vertices
of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold
in the case of I. |
uk_UA |
dc.description.sponsorship |
We were introduced to beautiful theory of self-similar groups during our
stay at the Mathematics Department of Texas A&M University. We
thank Professors R. I. Grigorchuk, V. Nekrashevych and Z. Suni´c for ˇ
useful discussions and warmest hospitality. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Self-similar groups and finite Gelfand pairs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті