Показати простий запис статті

dc.contributor.author D’Angeli, D.
dc.contributor.author Donno, A.
dc.date.accessioned 2019-06-20T03:07:43Z
dc.date.available 2019-06-20T03:07:43Z
dc.date.issued 2007
dc.identifier.citation Self-similar groups and finite Gelfand pairs / D. D’Angeli, A. Donno // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 54–69. — Бібліогр.: 14 назв. — англ. uk_UA
dc.identifier.isbn 2000 Mathematics Subject Classification: 20E08, 20F65, 20F10, 05C25, 43A85, 43A90.
dc.identifier.issn 1726-3255
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/157371
dc.description.abstract We study the Basilica group B, the iterated monodromy group I of the complex polynomial z 2 + i and the Hanoi Towers group H(3). The first two groups act on the binary rooted tree, the third one on the ternary rooted tree. We prove that the action of B, I and H(3) on each level is 2-points homogeneous with respect to the ultrametric distance. This gives rise to symmetric Gelfand pairs: we then compute the corresponding spherical functions. In the case of B and H(3) this result can also be obtained by using the strong property that the rigid stabilizers of the vertices of the first level of the tree act spherically transitively on the respective subtrees. On the other hand, this property does not hold in the case of I. uk_UA
dc.description.sponsorship We were introduced to beautiful theory of self-similar groups during our stay at the Mathematics Department of Texas A&M University. We thank Professors R. I. Grigorchuk, V. Nekrashevych and Z. Suni´c for ˇ useful discussions and warmest hospitality. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title Self-similar groups and finite Gelfand pairs uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис