Показати простий запис статті
dc.contributor.author |
Dokuchaev, M.A. |
|
dc.contributor.author |
Kirichenko, V.V. |
|
dc.contributor.author |
Zelensky, A.V. |
|
dc.contributor.author |
Zhuravlev, V.N. |
|
dc.date.accessioned |
2019-06-18T17:50:15Z |
|
dc.date.available |
2019-06-18T17:50:15Z |
|
dc.date.issued |
2005 |
|
dc.identifier.citation |
Gorenstein matrices / M.A. Dokuchaev, V.V. Kirichenko, A.V. Zelensky, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 8–29. — Бібліогр.: 24 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 16P40; 16G10. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/156609 |
|
dc.description.abstract |
Let A = (aij ) be an integral matrix. We say that
A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein
(0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the
Gorenstein cyclic (0, 1, 2)-matrix An such that inx An = 2.
If a Latin square Ln with a first row and first column (0, 1, . . .
n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley
table of a direct product of m copies of the cyclic group of order 2.
Conversely, the Cayley table Em of the elementary abelian group
Gm = (2)×. . .×(2) of order 2
m is a Latin square and a Gorenstein
symmetric matrix with first row (0, 1, . . . , 2
m − 1) and
σ(Em) =
1 2 3 . . . 2
m − 1 2m
2
m 2
m − 1 2m − 2 . . . 2 1 . |
uk_UA |
dc.description.sponsorship |
The first author was partially supported by CNPq of Brazil, Proc.
304658/2003-0.
The second author thanks the Institute of Mathenatics and Statistics
of the University of S˜ao Paulo for the hospitality during his visit, which
was supported by FAPESP of Brazil, Proc. 02/05087-2. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Gorenstein matrices |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті