Показати простий запис статті
dc.contributor.author |
Protasov, I.V. |
|
dc.date.accessioned |
2019-06-16T15:32:41Z |
|
dc.date.available |
2019-06-16T15:32:41Z |
|
dc.date.issued |
2003 |
|
dc.identifier.citation |
Uniform ball structures / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 93–102. — Бібліогр.: 2 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2001 Mathematics Subject Classification: 03E99, 54A05, 54E15. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/155285 |
|
dc.description.abstract |
A ball structure is a triple B = (X, P, B), where
X, P are nonempty sets and, for all x ∈ X, α ∈ P, B(x, α) is a subset of X, x ∈ B(x, α), which is called a ball of radius α around x.
We introduce the class of uniform ball structures as an asymptotic
counterpart of the class of uniform topological spaces. We show
that every uniform ball structure can be approximated by metrizable ball structures. We also define two types of ball structures
closed to being metrizable, and describe the extremal elements in
the classes of ball structures with fixed support X. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Uniform ball structures |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті