Анотація:
Рассматриваются группы, имеющие лишь конечное число бесконечных классов сопряженных подгрупп. Установлено, что если группа G из рассматриваемого класса групп бесконечна над своим FC-центром, то FC-центр конечен. В случае, когда G конечна над FC-центром, показано, что такая группа включает в себя по модулю некоторой конечной подгруппы такую абелеву нормальную подгруппу A-свободную конечного ранга, что любой элемент не содержащийся в A, действует на A рационально неприводимо. При этом G/A — циклическая группа простого порядка.