Показати простий запис статті
dc.contributor.author |
Banakh, T.T. |
|
dc.contributor.author |
Gavrylkiv, V. |
|
dc.contributor.author |
Nykyforchyn, O. |
|
dc.date.accessioned |
2019-06-14T03:39:46Z |
|
dc.date.available |
2019-06-14T03:39:46Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Algebra in superextensions of groups, I: zeros and commutativity / T.T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra and Discrete Mathematics. — 2008. — Vol. 7, № 3. — С. 1–29. — Бібліогр.: 13 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 20M99, 54B20. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/153373 |
|
dc.description.abstract |
Given a group X we study the algebraic structure of its superextension λ(X). This is a right-topological semigroup consisting of all maximal linked systems on X
endowed with the operation
A∘B={C⊂X:{x∈X:x−1C∈B}∈A}
that extends the group operation of X. We characterize right zeros of λ(X) as invariant maximal linked systems on X and prove that λ(X) has a right zero if and only if each element of X has odd order. On the other hand, the semigroup λ(X) contains a left zero if and only if it contains a zero if and only if X has odd order |X|≤5. The semigroup λ(X) is commutative if and only if |X|≤4. We finish the paper with a complete description of the algebraic structure of the semigroups λ(X) for all groups X of cardinality |X|≤5. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Algebra in superextensions of groups, I: zeros and commutativity |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті