Показати простий запис статті
dc.contributor.author |
Gubareni, N. |
|
dc.contributor.author |
Khibina, M. |
|
dc.date.accessioned |
2019-06-10T17:17:15Z |
|
dc.date.available |
2019-06-10T17:17:15Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
Serial piecewise domains / N. Gubareni, M. Khibina // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 4. — С. 59–72. — Бібліогр.: 25 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2000 Mathematics Subject Classification:16P40, 16G10 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152382 |
|
dc.description.abstract |
A ring A is called a piecewise domain with respect to the complete set of idempotents {e1,e2,…,em} if every nonzero homomorphism eiA→ejA is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Serial piecewise domains |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті