Показати простий запис статті
dc.contributor.author |
Sagi, S. |
|
dc.date.accessioned |
2019-06-09T17:20:35Z |
|
dc.date.available |
2019-06-09T17:20:35Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
Ideals in (Z⁺, ≤D) / S. Sagi // Algebra and Discrete Mathematics. — 2013. — Vol. 16, № 1. — С. 107–115. — Бібліогр.: 9 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC:06B10,11A99. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/152313 |
|
dc.description.abstract |
A convolution is a mapping C of the set Z⁺ of positive integers into the set P(Z⁺) of all subsets of Z⁺ such that every member of C(n) is a divisor of n. If for any n, D(n) is the set of all positive divisors of n, then D is called the Dirichlet's convolution. It is well known that Z⁺ has the structure of a distributive lattice with respect to the division order. Corresponding to any general convolution C, one can define a binary relation ≤C on Z⁺ by 'm ≤ C n if and only if m ∈ C(n) '. A general convolution may not induce a lattice on Z⁺. However most of the convolutions induce a meet semi lattice structure on Z⁺. In this paper we consider a general meet semi lattice and study it's ideals and extend these to (Z⁺, ≤D), where D is the Dirichlet's convolution. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Ideals in (Z⁺, ≤D) |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті