Показати простий запис статті

dc.contributor.author Shestakov, I.
dc.contributor.author Tsurkov, A.
dc.date.accessioned 2019-06-09T13:36:43Z
dc.date.available 2019-06-09T13:36:43Z
dc.date.issued 2013
dc.identifier.citation Automorphic equivalence of the representations of Lie algebras / I. Shestakov, A. Tsurkov // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 1. — С. 96–126. — Бібліогр.: 5 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC:17B10.
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/152257
dc.description.abstract In this paper we research the algebraic geometry of the representations of Lie algebras over fixed field k. We assume that this field is infinite and char (k) = 0. We consider the representations of Lie algebras as 2-sorted universal algebras. The representations of groups were considered by similar approach: as 2-sorted universal algebras - in [3] and [2]. The basic notions of the algebraic geometry of representations of Lie algebras we define similar to the basic notions of the algebraic geometry of representations of groups (see [2]). We prove that if a field k has not nontrivial automorphisms then automorphic equivalence of representations of Lie algebras coincide with geometric equivalence. This result is similar to the result of [4], which was achieved for representations of groups. But we achieve our result by another method: by consideration of 1-sorted objects. We suppose that our method can be more perspective in the further researches. uk_UA
dc.description.sponsorship We acknowledge the support by FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo (Foundation for Support Research of the State São Paulo), projects No. 2010/50948-2 and No. 2010/50347-9. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title Automorphic equivalence of the representations of Lie algebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис