Показати простий запис статті
dc.contributor.author |
Blaom, A.D. |
|
dc.date.accessioned |
2019-02-21T07:22:22Z |
|
dc.date.available |
2019-02-21T07:22:22Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds / A.D. Blaom // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53C30; 53C15; 53C07 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.074 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149366 |
|
dc.description.abstract |
A linear connection on a Lie algebroid is called a Cartan connection if it is suitably compatible with the Lie algebroid structure. Here we show that a smooth connected manifold M is locally homogeneous – i.e., admits an atlas of charts modeled on some homogeneous space G/H – if and only if there exists a transitive Lie algebroid over M admitting a flat Cartan connection that is 'geometrically closed'. It is shown how the torsion and monodromy of the connection determine the particular form of G/H. Under an additional completeness hypothesis, local homogeneity becomes global homogeneity, up to cover. |
uk_UA |
dc.description.sponsorship |
The author acknowledges many helpful discussions with Erc¨ument Orta¸cgil. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Infinitesimalization and Reconstruction of Locally Homogeneous Manifolds |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті