Показати простий запис статті

dc.contributor.author Kanki, M.
dc.date.accessioned 2019-02-21T07:08:28Z
dc.date.available 2019-02-21T07:08:28Z
dc.date.issued 2013
dc.identifier.citation Integrability of Discrete Equations Modulo a Prime / M. Kanki // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 18 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 37K10; 34M55; 37P25
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2013.056
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149351
dc.description.abstract We apply the ''almost good reduction'' (AGR) criterion, which has been introduced in our previous works, to several classes of discrete integrable equations. We verify our conjecture that AGR plays the same role for maps of the plane define over simple finite fields as the notion of the singularity confinement does. We first prove that q-discrete analogues of the Painlevé III and IV equations have AGR. We next prove that the Hietarinta-Viallet equation, a non-integrable chaotic system also has AGR. uk_UA
dc.description.sponsorship The author wish to thank Professors Jun Mada, K.M. Tamizhmani, Tetsuji Tokihiro and Ralph Willox for insightful discussions and comments. He also thanks the detailed suggestions by the referees. This work is supported by Grant-in-Aid for JSPS Fellows (24-1379). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Integrability of Discrete Equations Modulo a Prime uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис