Показати простий запис статті
dc.contributor.author |
Bihun, O. |
|
dc.contributor.author |
Chakravarty, S. |
|
dc.date.accessioned |
2019-02-19T19:45:29Z |
|
dc.date.available |
2019-02-19T19:45:29Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
The Chazy XII Equation and Schwarz Triangle Functions / O. Bihun, S. Chakravarty // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 32 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34M45; 34M55; 33C05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.095 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149278 |
|
dc.description.abstract |
Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348] showed that the Chazy XII equation y′′′−2yy′′+3y′²=K(6y′−y²)², K∈C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of K, can be expressed as y=a₁w₁+a₂w₂+a₃w₃ where wi solve the generalized Darboux-Halphen system. This relationship holds only for certain values of the coefficients (a1,a2,a3) and the Darboux-Halphen parameters (α,β,γ), which are enumerated in Table 2. Consequently, the Chazy XII solution y(z) is parametrized by a particular class of Schwarz triangle functions S(α,β,γ;z) which are used to represent the solutions wi of the Darboux-Halphen system. The paper only considers the case where α+β+γ<1. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple (P^,Q^,R^). |
uk_UA |
dc.description.sponsorship |
The work of SC was partly supported by NSF grant No. DMS-1410862. The work of OB
was supported in part by a CRCW grant from University of Colorado, Colorado Springs. The
authors thank Professor Mark Ablowitz for useful discussions, as well as the anonymous referees
for their valuable remarks which substantially improved the article. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Chazy XII Equation and Schwarz Triangle Functions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті