Показати простий запис статті
dc.contributor.author |
Herlemont, B. |
|
dc.contributor.author |
Ogievetsky, O. |
|
dc.date.accessioned |
2019-02-19T19:40:42Z |
|
dc.date.available |
2019-02-19T19:40:42Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Differential Calculus on h-Deformed Spaces / B. Herlemont, O. Ogievetsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 16S30; 16S32; 16T25; 13B30; 17B10; 39A14 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.082 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149274 |
|
dc.description.abstract |
We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators Diffh,σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings Diffh,σ(n). |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The
full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html.
The work of O.O. was supported by the Program of Competitive Growth of Kazan Federal
University and by the grant RFBR 17-01-00585. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Differential Calculus on h-Deformed Spaces |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті