Показати простий запис статті

dc.contributor.author Geck, M.
dc.date.accessioned 2019-02-19T19:32:10Z
dc.date.available 2019-02-19T19:32:10Z
dc.date.issued 2017
dc.identifier.citation James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 20C33; 20C20
dc.identifier.other DOI:10.3842/SIGMA.2017.091
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149266
dc.description.abstract James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics. The full collection is available at https://www.emis.de/journals/SIGMA/symmetric-groups2018.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title James' Submodule Theorem and the Steinberg Module uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис