Показати простий запис статті
dc.contributor.author |
Geck, M. |
|
dc.date.accessioned |
2019-02-19T19:32:10Z |
|
dc.date.available |
2019-02-19T19:32:10Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
James' Submodule Theorem and the Steinberg Module / M. Geck // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 20C33; 20C20 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2017.091 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149266 |
|
dc.description.abstract |
James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split BN-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on the Representation Theory of the Symmetric Groups
and Related Topics. The full collection is available at https://www.emis.de/journals/SIGMA/symmetric-groups2018.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
James' Submodule Theorem and the Steinberg Module |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті