Показати простий запис статті
dc.contributor.author |
Cariñena, J.F. |
|
dc.contributor.author |
Guha, P. |
|
dc.contributor.author |
de Lucas, J. |
|
dc.date.accessioned |
2019-02-19T19:03:08Z |
|
dc.date.available |
2019-02-19T19:03:08Z |
|
dc.date.issued |
2013 |
|
dc.identifier.citation |
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 34A26; 34A05; 34A34; 17B66; 53Z05 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2013.026 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149230 |
|
dc.description.abstract |
A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants
and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
The research of J.F. Cari˜nena and J. de Lucas was supported by the Polish National Science
Centre under the grant HARMONIA Nr 2012/04/M/ST1/00523. They also acknowledge partial
financial support by research projects MTM–2009–11154 (MEC) and E24/1 (DGA). J. de Lucas
would like to thank for a research grant FMI40/10 (DGA) to accomplish a research stay in the
University of Zaragoza. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті