Показати простий запис статті
| dc.contributor.author | 
Takasaki, K. | 
 | 
| dc.date.accessioned | 
2019-02-19T18:21:19Z | 
 | 
| dc.date.available | 
2019-02-19T18:21:19Z | 
 | 
| dc.date.issued | 
2012 | 
 | 
| dc.identifier.citation | 
Old and New Reductions of Dispersionless Toda Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2010 Mathematics Subject Classification: 35Q99; 37K10; 53B50; 53D45 | 
 | 
| dc.identifier.other | 
DOI: http://dx.doi.org/10.3842/SIGMA.2012.102 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/149183 | 
 | 
| dc.description.abstract | 
This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented. | 
uk_UA | 
| dc.description.sponsorship | 
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html.
We thank the referees for many valuable comments. This work is partly supported by JSPS Grants-in-Aid for Scientific Research No. 21540218 and No. 22540186 from the Japan Society for the Promotion of Science. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
Old and New Reductions of Dispersionless Toda Hierarchy | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті