Показати простий запис статті

dc.contributor.author Bering, K.
dc.date.accessioned 2019-02-19T18:00:11Z
dc.date.available 2019-02-19T18:00:11Z
dc.date.issued 2009
dc.identifier.citation Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 53D05; 53D55; 58A15; 58A50; 58C50; 58Z05
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149170
dc.description.abstract Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Deformation Quantization. The author thanks I.A. Batalin, D. Sternheimer and the three referees for comments. The work of K.B. is supported by the Ministry of Education of the Czech Republic under the project MSM 0021622409. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Three Natural Generalizations of Fedosov Quantization uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис