Показати простий запис статті

dc.contributor.author Yamada, Y.
dc.date.accessioned 2019-02-19T17:53:05Z
dc.date.available 2019-02-19T17:53:05Z
dc.date.issued 2009
dc.identifier.citation A Lax Formalism for the Elliptic Difference Painlevé Equation / Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 34A05; 14E07; 14H52
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149164
dc.description.abstract A Lax formalism for the elliptic Painlevé equation is presented. The construction is based on the geometry of the curves on P¹ × P¹ and described in terms of the point configurations. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). The idea of this work came from the study of the Pad´e approximation method to the Painlev´e equations [13], and it was partially presented at the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” [14]. The author would like to thank the organisers and participants for their interest. He also thank to Professors K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, H. Sakai, M-H. Saito and S. Tsujimoto for discussions. The author would like to thank the referees for their valuable comments and suggestions. This work is supported by Grants-in-Aid for Scientific No.17340047. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Lax Formalism for the Elliptic Difference Painlevé Equation uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис