Показати простий запис статті
| dc.contributor.author | 
Mellouli, N. | 
 | 
| dc.date.accessioned | 
2019-02-19T17:34:36Z | 
 | 
| dc.date.available | 
2019-02-19T17:34:36Z | 
 | 
| dc.date.issued | 
2009 | 
 | 
| dc.identifier.citation | 
Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2000 Mathematics Subject Classification: 17B10; 17B68; 53D55 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/149129 | 
 | 
| dc.description.abstract | 
This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula. | 
uk_UA | 
| dc.description.sponsorship | 
I am grateful to H. Gargoubi and V. Ovsienko for the statement of the problem and constant help. I am also pleased to thank D. Leites for critical reading of this paper and a number of helpful suggestions. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
Second-Order Conformally Equivariant Quantization in Dimension 1|2 | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті