Показати простий запис статті
dc.contributor.author |
Alekseevsky, D.V. |
|
dc.contributor.author |
Nikonorov, Y.G. |
|
dc.date.accessioned |
2019-02-19T17:31:47Z |
|
dc.date.available |
2019-02-19T17:31:47Z |
|
dc.date.issued |
2009 |
|
dc.identifier.citation |
Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 53C20; 53C25; 53C35 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149121 |
|
dc.description.abstract |
A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The first author was partially supported by the Royal Society (Travel Grant 2007/R3). The second author was partially supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSH-5682.2008.1). We are grateful to all referees, whose comments and suggestions permit us to improve the presentation of this article. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Compact Riemannian Manifolds with Homogeneous Geodesics |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті