Наукова електронна бібліотека
періодичних видань НАН України

Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Beffa, G.M.
dc.date.accessioned 2019-02-19T13:19:38Z
dc.date.available 2019-02-19T13:19:38Z
dc.date.issued 2008
dc.identifier.citation Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37K25; 53A55
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149050
dc.description.abstract In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис