Показати простий запис статті
dc.contributor.author |
Schuch, D. |
|
dc.contributor.author |
Moshinsky, M. |
|
dc.date.accessioned |
2019-02-19T13:08:49Z |
|
dc.date.available |
2019-02-19T13:08:49Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 37J15; 81Q05; 81R05; 81S30 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149027 |
|
dc.description.abstract |
For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism. |
uk_UA |
dc.description.sponsorship |
Both authors would like to express their gratitude to the Instituto de F´ısica, UNAM, that made possible the visit of the first author to Mexico. One of the authors (D.S.) would like to thank Dr. Robert Berger for valuable and stimulating discussions. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті