Показати простий запис статті
| dc.contributor.author | 
Roitman, M. | 
 | 
| dc.date.accessioned | 
2019-02-19T13:07:52Z | 
 | 
| dc.date.available | 
2019-02-19T13:07:52Z | 
 | 
| dc.date.issued | 
2008 | 
 | 
| dc.identifier.citation | 
On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2000 Mathematics Subject Classification: 17B69 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/149024 | 
 | 
| dc.description.abstract | 
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. | 
uk_UA | 
| dc.description.sponsorship | 
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
On Griess Algebras | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті