Показати простий запис статті

dc.contributor.author Roitman, M.
dc.date.accessioned 2019-02-19T13:07:52Z
dc.date.available 2019-02-19T13:07:52Z
dc.date.issued 2008
dc.identifier.citation On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 17B69
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/149024
dc.description.abstract In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On Griess Algebras uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис