Показати простий запис статті
dc.contributor.author |
Roitman, M. |
|
dc.date.accessioned |
2019-02-19T13:07:52Z |
|
dc.date.available |
2019-02-19T13:07:52Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
On Griess Algebras / M. Roitman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 17B69 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/149024 |
|
dc.description.abstract |
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V₀ + V₂ + V₃ + ..., such that dim V₀ = 1 and V₂ contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
On Griess Algebras |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті