Показати простий запис статті
| dc.contributor.author | 
Hone, A.N.W. | 
 | 
| dc.contributor.author | 
Kouloukas, T.E. | 
 | 
| dc.contributor.author | 
Ward, C. | 
 | 
| dc.date.accessioned | 
2019-02-18T18:48:50Z | 
 | 
| dc.date.available | 
2019-02-18T18:48:50Z | 
 | 
| dc.date.issued | 
2017 | 
 | 
| dc.identifier.citation | 
On Reductions of the Hirota-Miwa Equation  / A.N.W. Hone, T.E. Kouloukas, C. Ward // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2010 Mathematics Subject Classification: 70H06; 37K10; 39A20; 39A14; 13F60 | 
 | 
| dc.identifier.other | 
DOI:10.3842/SIGMA.2017.057 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/148768 | 
 | 
| dc.description.abstract | 
The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations. | 
uk_UA | 
| dc.description.sponsorship | 
This paper is a contribution to the Special Issue on Symmetries and Integrability of Dif ference Equations.
The full collection is available at http://www.emis.de/journals/SIGMA/SIDE12.html.
Some of these results first appeared in the Ph.D. Thesis [28], which was supported by EPSRC
studentship EP/P50421X/1. ANWH is supported by EPSRC fellowship EP/M004333/1. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
On Reductions of the Hirota-Miwa Equation | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті