Показати простий запис статті
| dc.contributor.author | Brouwer, A.E. |  | 
| dc.contributor.author | Popoviciu, M. |  | 
| dc.date.accessioned | 2019-02-18T18:08:45Z |  | 
| dc.date.available | 2019-02-18T18:08:45Z |  | 
| dc.date.issued | 2012 |  | 
| dc.identifier.citation | Sylvester versus Gundelfinger / A.E. Brouwer, M. Popoviciu // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. | uk_UA | 
| dc.identifier.issn | 1815-0659 |  | 
| dc.identifier.other | 2010 Mathematics Subject Classification: 13A15; 68W30 |  | 
| dc.identifier.other | DOI: http://dx.doi.org/10.3842/SIGMA.2012.075 |  | 
| dc.identifier.uri | http://dspace.nbuv.gov.ua/handle/123456789/148715 |  | 
| dc.description.abstract | Let Vn be the SL₂-module of binary forms of degree n and let V=V₁⊕V₃⊕V₄. We show that the minimum number of generators of the algebra R=C[V]SL₂ of polynomial functions on V invariant under the action of SL₂ equals 63. This settles a 143-year old question. | uk_UA | 
| dc.description.sponsorship | This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
The second author is partially supported by the Swiss National Science Foundation. | uk_UA | 
| dc.language.iso | en | uk_UA | 
| dc.publisher | Інститут математики НАН України | uk_UA | 
| dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications |  | 
| dc.title | Sylvester versus Gundelfinger | uk_UA | 
| dc.type | Article | uk_UA | 
| dc.status | published earlier | uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті