Показати простий запис статті

dc.contributor.author Walton, M.A.
dc.date.accessioned 2019-02-18T17:56:45Z
dc.date.available 2019-02-18T17:56:45Z
dc.date.issued 2012
dc.identifier.citation On Affine Fusion and the Phase Model / M.A. Walton // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 81T40; 81R10; 81R12; 17B37; 17B81; 05E05
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.086
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148697
dc.description.abstract A brief review is given of the integrable realization of affine fusion discovered recently by Korff and Stroppel. They showed that the affine fusion of the su(n) Wess-Zumino-Novikov-Witten (WZNW) conformal field theories appears in a simple integrable system known as the phase model. The Yang-Baxter equation leads to the construction of commuting operators as Schur polynomials, with noncommuting hopping operators as arguments. The algebraic Bethe ansatz diagonalizes them, revealing a connection to the modular S matrix and fusion of the su(n) WZNW model. The noncommutative Schur polynomials play roles similar to those of the primary field operators in the corresponding WZNW model. In particular, their 3-point functions are the su(n) fusion multiplicities. We show here how the new phase model realization of affine fusion makes obvious the existence of threshold levels, and how it accommodates higher-genus fusion. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. I thank Elaine Beltaos, Terry Gannon, Ali Nassar and Andrew Urichuk for discussions and/or reading the manuscript. This research was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On Affine Fusion and the Phase Model uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис