Показати простий запис статті
dc.contributor.author |
Kuznetsova, M.N. |
|
dc.contributor.author |
Pekcan, A. |
|
dc.contributor.author |
Zhiber, A.V. |
|
dc.date.accessioned |
2019-02-18T17:48:22Z |
|
dc.date.available |
2019-02-18T17:48:22Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) / M.N. Kuznetsova, A. Pekcan, A.V. Zhiber // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 20 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35L70 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.090 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148676 |
|
dc.description.abstract |
We present the complete classification of equations of the form uxy=f(u,ux,uy) and the Klein-Gordon equations vxy=F(v) connected with one another by differential substitutions v=φ(u,ux,uy) such that φuxφuy≠0 over the ring of complex-valued variables. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
This work is partially supported by the Russian Foundation for Basic Research (RFBR) (Grants 11-01-97005-Povolj’ie-a, 12-01-31208 mol-a). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Klein-Gordon Equation and Differential Substitutions of the Form v=φ(u,ux,uy) |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті