Показати простий запис статті
| dc.contributor.author | 
Saniga, M. | 
 | 
| dc.contributor.author | 
Planat, M. | 
 | 
| dc.contributor.author | 
Pracna, P. | 
 | 
| dc.contributor.author | 
Lévay, P. | 
 | 
| dc.date.accessioned | 
2019-02-18T17:45:05Z | 
 | 
| dc.date.available | 
2019-02-18T17:45:05Z | 
 | 
| dc.date.issued | 
2012 | 
 | 
| dc.identifier.citation | 
'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2010 Mathematics Subject Classification: 51Exx; 81R99 | 
 | 
| dc.identifier.other | 
DOI: http://dx.doi.org/10.3842/SIGMA.2012.083 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/148670 | 
 | 
| dc.description.abstract | 
Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄ ones, can uniquely be extended into geometric hyperplanes of the split Cayley hexagon of order two, namely into those of types V₂₂(37;0,12,15,10) and V₄(49;0,0,21,28) in the classification of Frohardt and Johnson [Comm. Algebra 22 (1994), 773-797]. Moreover, employing an automorphism of order seven of the hexagon, six more replicas of either of the two configurations are obtained. | 
uk_UA | 
| dc.description.sponsorship | 
This work was partially supported by the VEGA grant agency project 2/0098/10. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті