Показати простий запис статті
dc.contributor.author |
Broadbridge, P. |
|
dc.contributor.author |
Chanu, C.M. |
|
dc.contributor.author |
Miller Jr., Willard |
|
dc.date.accessioned |
2019-02-18T17:33:50Z |
|
dc.date.available |
2019-02-18T17:33:50Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables / P. Broadbridge, C.M. Chanu, Willard Miller Jr. // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 36 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 35Q40; 35J05 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.089 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148652 |
|
dc.description.abstract |
Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N−1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
This work was partially supported by a grant from the Simons Foundation (#208754 to Willard Miller, Jr.) and by the Australian Research Council (grant DP1095044 to G.E. Prince and P. Broadbridge). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті