Наукова електронна бібліотека
періодичних видань НАН України

Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Fuksa, J.
dc.date.accessioned 2019-02-18T15:53:58Z
dc.date.available 2019-02-18T15:53:58Z
dc.date.issued 2017
dc.identifier.citation Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry / J. Fuksa // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 33 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 17B37; 81R50; 82B23
dc.identifier.other DOI:10.3842/SIGMA.2017.015
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148565
dc.description.abstract Supersymmetric composite generalized quantum integrable models solvable by the algebraic Bethe ansatz are studied. Using a coproduct in the bialgebra of monodromy matrix elements and their action on Bethe vectors, formulas for Bethe vectors in the composite models with supersymmetry based on the super-Yangians Y[gl(2|1)] and Y[gl(1|2)] are derived. uk_UA
dc.description.sponsorship The author wants to express his gratitude to N.A. Slavnov for the proposal to investigate this topic and discussions. He thanks also to S. Pakuliak for discussions and to A.P. Isaev and C. Burd´ık for their support. The work of the author has been supported by the Grant Agency ˇ of the Czech Technical University in Prague, grant No. SGS15/215/OHK4/3T/14, and by the Grant of the Plenipotentiary of the Czech Republic at JINR, Dubna. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Bethe Vectors for Composite Models with gl(2|1) and gl(1|2) Supersymmetry uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис