Показати простий запис статті
| dc.contributor.author | 
Chiba, H. | 
 | 
| dc.date.accessioned | 
2019-02-18T15:51:51Z | 
 | 
| dc.date.available | 
2019-02-18T15:51:51Z | 
 | 
| dc.date.issued | 
2017 | 
 | 
| dc.identifier.citation | 
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation / H. Chiba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 18 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2010 Mathematics Subject Classification: 34M35; 34M45; 34M55 | 
 | 
| dc.identifier.other | 
DOI:10.3842/SIGMA.2017.025 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/148562 | 
 | 
| dc.description.abstract | 
A multi-Poisson structure on a Lie algebra g provides a systematic way to construct completely integrable Hamiltonian systems on g expressed in Lax form ∂Xλ/∂t=[Xλ,Aλ] in the sense of the isospectral deformation, where Xλ,Aλ∈g depend rationally on the indeterminate λ called the spectral parameter. In this paper, a method for modifying the isospectral deformation equation to the Lax equation ∂Xλ/∂t=[Xλ,Aλ]+∂Aλ/∂λ in the sense of the isomonodromic deformation, which exhibits the Painlevé property, is proposed. This method gives a few new Painlevé systems of dimension four. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
Multi-Poisson Approach to the Painlevé Equations: from the Isospectral Deformation to the Isomonodromic Deformation | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті