Показати простий запис статті
dc.contributor.author |
Chanu, C.M. |
|
dc.contributor.author |
Degiovanni, L. |
|
dc.contributor.author |
Rastelli, G. |
|
dc.date.accessioned |
2019-02-18T13:28:01Z |
|
dc.date.available |
2019-02-18T13:28:01Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Superintegrable Extensions of Superintegrable Systems / C.M. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 10 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70H06; 70H33; 53C21 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.070 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148469 |
|
dc.description.abstract |
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on E² and S² and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Superintegrability, Exact Solvability, and Special Functions”. The full collection is available at http://www.emis.de/journals/SIGMA/SESSF2012.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Superintegrable Extensions of Superintegrable Systems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті