Показати простий запис статті
dc.contributor.author |
Michel, Jean-Philippe |
|
dc.date.accessioned |
2019-02-18T11:56:51Z |
|
dc.date.available |
2019-02-18T11:56:51Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Conformally Equivariant Quantization - a Complete Classification / Jean-Philippe Michel // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 25 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53A55; 53A30; 17B56; 47E05 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.022 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148414 |
|
dc.description.abstract |
Conformally equivariant quantization is a peculiar map between symbols of real weight δ and differential operators acting on tensor densities, whose real weights are designed by λ and λ+δ. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight δ. Later, Silhan has determined the critical values of δ for which unique existence is lost, and conjectured that for those values of δ existence is lost for a generic weight λ. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of δ and λ. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight δ, and (ii) in that case the conformally equivariant quantization exists only for a finite number of λ, corresponding to nontrivial conformally invariant differential operators on λ-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization. |
uk_UA |
dc.description.sponsorship |
It is a pleasure to acknowledge Christian Duval, Pierre Mathonet and Valentin Ovsienko for
fruitful discussions and the referees for suggesting numerous improvements. I thank the Luxembourgian NRF for support via the AFR grant PDR-09-063. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Conformally Equivariant Quantization - a Complete Classification |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті