Показати простий запис статті
dc.contributor.author |
Gurau, R. |
|
dc.contributor.author |
Ryan, J.P. |
|
dc.date.accessioned |
2019-02-18T11:43:55Z |
|
dc.date.available |
2019-02-18T11:43:55Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Colored Tensor Models - a Review / R. Gurau, J.P. Ryan // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 130 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 05C15; 05C75; 81Q30; 81T17; 81T18; 83C27; 83C45 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.020 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148407 |
|
dc.description.abstract |
Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions), non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue “Loop Quantum Gravity and Cosmology”. The full collection is available at http://www.emis.de/journals/SIGMA/LQGC.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Colored Tensor Models - a Review |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті