Наукова електронна бібліотека
періодичних видань НАН України

Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Oeckl, R.
dc.date.accessioned 2019-02-18T11:17:54Z
dc.date.available 2019-02-18T11:17:54Z
dc.date.issued 2012
dc.identifier.citation Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation / R. Oeckl // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 57R56; 81S10; 81T05; 81T20
dc.identifier.other DOI: http://dx.doi.org/10.3842/SIGMA.2012.050
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/148384
dc.description.abstract We present a rigorous quantization scheme that yields a quantum field theory in general boundary form starting from a linear field theory. Following a geometric quantization approach in the Kähler case, state spaces arise as spaces of holomorphic functions on linear spaces of classical solutions in neighborhoods of hypersurfaces. Amplitudes arise as integrals of such functions over spaces of classical solutions in regions of spacetime. We prove the validity of the TQFT-type axioms of the general boundary formulation under reasonable assumptions. We also develop the notions of vacuum and coherent states in this framework. As a first application we quantize evanescent waves in Klein-Gordon theory. uk_UA
dc.description.sponsorship I would like to thank Daniele Colosi for stimulating discussions. This work was supported in part by CONACyT grant 49093. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис