Показати простий запис статті
dc.contributor.author |
Oeckl, R. |
|
dc.date.accessioned |
2019-02-18T11:17:54Z |
|
dc.date.available |
2019-02-18T11:17:54Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation / R. Oeckl // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 33 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 57R56; 81S10; 81T05; 81T20 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.050 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148384 |
|
dc.description.abstract |
We present a rigorous quantization scheme that yields a quantum field theory in general boundary form starting from a linear field theory. Following a geometric quantization approach in the Kähler case, state spaces arise as spaces of holomorphic functions on linear spaces of classical solutions in neighborhoods of hypersurfaces. Amplitudes arise as integrals of such functions over spaces of classical solutions in regions of spacetime. We prove the validity of the TQFT-type axioms of the general boundary formulation under reasonable assumptions. We also develop the notions of vacuum and coherent states in this framework. As a first application we quantize evanescent waves in Klein-Gordon theory. |
uk_UA |
dc.description.sponsorship |
I would like to thank Daniele Colosi for stimulating discussions. This work was supported in
part by CONACyT grant 49093. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Holomorphic Quantization of Linear Field Theory in the General Boundary Formulation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті