Показати простий запис статті
dc.contributor.author |
B.A. Lecomte, P. |
|
dc.contributor.author |
Leuther, T. |
|
dc.contributor.author |
Mushengezi, E.Z. |
|
dc.date.accessioned |
2019-02-18T11:00:40Z |
|
dc.date.available |
2019-02-18T11:00:40Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
On a Lie Algebraic Characterization of Vector Bundles / P. B.A. Lecomte, T. Leuther, E.Z. Mushengezi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 13N10; 16S32; 17B65; 17B63 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2012.004 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/148364 |
|
dc.description.abstract |
We prove that a vector bundle π: E→M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229-239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1. |
uk_UA |
dc.description.sponsorship |
We thank the referees for suggestions leading to improvements of the original paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
On a Lie Algebraic Characterization of Vector Bundles |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті