Показати простий запис статті
dc.contributor.author |
De Bie, H. |
|
dc.date.accessioned |
2019-02-16T16:20:44Z |
|
dc.date.available |
2019-02-16T16:20:44Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian / H. De Bie // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 24 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2000 Mathematics Subject Classification: 33C80; 33C45; 30G35 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147996 |
|
dc.description.abstract |
We introduce the so-called Clifford-Hermite polynomials in the framework of Dunkl operators, based on the theory of Clifford analysis. Several properties of these polynomials are obtained, such as a Rodrigues formula, a differential equation and an explicit relation connecting them with the generalized Laguerre polynomials. A link is established with the generalized Hermite polynomials related to the Dunkl operators (see [Rösler M., Comm. Math. Phys. 192 (1998), 519-542, q-alg/9703006.]) as well as with the basis of the weighted L2 space introduced by Dunkl. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Dunkl Operators and Related Topics. The author is supported by a Ph.D. Fellowship of the the Research Foundation - Flanders (FWO). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті