Показати простий запис статті
dc.contributor.author |
Sharapov, A.A. |
|
dc.date.accessioned |
2019-02-16T09:32:31Z |
|
dc.date.available |
2019-02-16T09:32:31Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems / A.A. Sharapov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 35 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 70S10; 81T70; 83C40 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.098 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147863 |
|
dc.description.abstract |
Using the concept of variational tricomplex endowed with a presymplectic structure, we formulate the general notion of symmetry. We show that each generalized symmetry of a gauge system gives rise to a sequence of conservation laws that are represented by on-shell closed forms of various degrees. This extends the usual Noether's correspondence between global symmetries and conservation laws to the case of lower-degree conservation laws and not necessarily variational equations of motion. Finally, we equip the space of conservation laws of a given degree with a Lie bracket and establish a homomorphism of the resulting Lie algebra to the Lie algebra of global symmetries. |
uk_UA |
dc.description.sponsorship |
The work was partially supported by the RFBR grant No. 16-02-00284 A. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Variational Tricomplex, Global Symmetries and Conservation Laws of Gauge Systems |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті