Показати простий запис статті

dc.contributor.author Brochier, A.
dc.date.accessioned 2019-02-16T09:18:49Z
dc.date.available 2019-02-16T09:18:49Z
dc.date.issued 2016
dc.identifier.citation A Duflo Star Product for Poisson Groups / A. Brochier // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 21 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 20G42; 17B37; 53D55
dc.identifier.other DOI:10.3842/SIGMA.2016.088
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147854
dc.description.abstract Let G be a finite-dimensional Poisson algebraic, Lie or formal group. We show that the center of the quantization of G provided by an Etingof-Kazhdan functor is isomorphic as an algebra to the Poisson center of the algebra of functions on G. This recovers and generalizes Duflo's theorem which gives an isomorphism between the center of the enveloping algebra of a finite-dimensional Lie algebra a and the subalgebra of ad-invariant in the symmetric algebra of a. As our proof relies on Etingof-Kazhdan construction it ultimately depends on the existence of Drinfeld associators, but otherwise it is a fairly simple application of graphical calculus. This shed some lights on Alekseev-Torossian proof of the Kashiwara-Vergne conjecture, and on the relation observed by Bar-Natan-Le-Thurston between the Duflo isomorphism and the Kontsevich integral of the unknot. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Duflo Star Product for Poisson Groups uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис