Показати простий запис статті

dc.contributor.author Fedorov, Y.N.
dc.date.accessioned 2019-02-16T08:43:32Z
dc.date.available 2019-02-16T08:43:32Z
dc.date.issued 2007
dc.identifier.citation A Discretization of the Nonholonomic Chaplygin Sphere Problem / Y.N. Fedorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37J60; 37J35; 70H45
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147819
dc.description.abstract The celebrated problem of a non-homogeneous sphere rolling over a horizontal plane was proved to be integrable and was reduced to quadratures by Chaplygin. Applying the formalism of variational integrators (discrete Lagrangian systems) with nonholonomic constraints and introducing suitable discrete constraints, we construct a discretization of the n-dimensional generalization of the Chaplygin sphere problem, which preserves the same first integrals as the continuous model, except the energy. We then study the discretization of the classical 3-dimensional problem for a class of special initial conditions, when an analog of the energy integral does exist and the corresponding map is given by an addition law on elliptic curves. The existence of the invariant measure in this case is also discussed. uk_UA
dc.description.sponsorship This paper is a contribution to the Vadim Kuznetsov Memorial Issue ‘Integrable Systems and Related Topics’. I am grateful to the anonymous referees whose remarks helped to improve the text. The research was partially supported by Spanish Ministry of Science and Technology grant BFM 2003-09504-C02-02. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title A Discretization of the Nonholonomic Chaplygin Sphere Problem uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис