Наукова електронна бібліотека
періодичних видань НАН України

Generalized Deformed Commutation Relations with Nonzero Minimal Uncertainties in Position and/or Momentum and Applications to Quantum Mechanics

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Quesne, C.
dc.contributor.author Tkachuk, V.M.
dc.date.accessioned 2019-02-16T08:15:13Z
dc.date.available 2019-02-16T08:15:13Z
dc.date.issued 2007
dc.identifier.citation Generalized Deformed Commutation Relations with Nonzero Minimal Uncertainties in Position and/or Momentum and Applications to Quantum Mechanics / C. Quesne, V.M. Tkachuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 48 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 37N20; 81R15
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147794
dc.description.abstract Two generalizations of Kempf's quadratic canonical commutation relation in one dimension are considered. The first one is the most general quadratic commutation relation. The corresponding nonzero minimal uncertainties in position and momentum are determined and the effect on the energy spectrum and eigenfunctions of the harmonic oscillator in an electric field is studied. The second extension is a function-dependent generalization of the simplest quadratic commutation relation with only a nonzero minimal uncertainty in position. Such an uncertainty now becomes dependent on the average position. With each function-dependent commutation relation we associate a family of potentials whose spectrum can be exactly determined through supersymmetric quantum mechanical and shape invariance techniques. Some representations of the generalized Heisenberg algebras are proposed in terms of conventional position and momentum operators x, p. The resulting Hamiltonians contain a contribution proportional to p4 and their p-dependent terms may also be functions of x. The theory is illustrated by considering Pöschl-Teller and Morse potentials. uk_UA
dc.description.sponsorship V.M.T. thanks the National Fund for Scientific Research (FNRS), Belgium, for financial support. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Generalized Deformed Commutation Relations with Nonzero Minimal Uncertainties in Position and/or Momentum and Applications to Quantum Mechanics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис