Показати простий запис статті
dc.contributor.author |
Chicherin, D. |
|
dc.contributor.author |
Derkachov, S.E. |
|
dc.contributor.author |
Spiridonov, V.P. |
|
dc.date.accessioned |
2019-02-15T19:13:17Z |
|
dc.date.available |
2019-02-15T19:13:17Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation / D. Chicherin, S.E. Derkachov, V.P. Spiridonov // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 43 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81R50; 82B23; 33D05 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.028 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147757 |
|
dc.description.abstract |
We start from known solutions of the Yang-Baxter equation with a spectral parameter defined on the tensor product of two infinite-dimensional principal series representations of the group SL(2,C) or Faddeev's modular double. Then we describe its restriction to an irreducible finite-dimensional representation in one or both spaces. In this way we obtain very simple explicit formulas embracing rational and trigonometric finite-dimensional solutions of the Yang-Baxter equation. Finally, we construct these finite-dimensional solutions by means of the fusion procedure and find a nice agreement between two approaches. |
uk_UA |
dc.description.sponsorship |
We thank the referees for useful remarks to the paper. This work is supported by the Russian
Science Foundation (project no. 14-11-00598). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
From Principal Series to Finite-Dimensional Solutions of the Yang-Baxter Equation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті