Показати простий запис статті

dc.contributor.author Erik A. van Doorn
dc.date.accessioned 2019-02-15T19:05:54Z
dc.date.available 2019-02-15T19:05:54Z
dc.date.issued 2016
dc.identifier.citation Shell Polynomials and Dual Birth-Death Processes / Erik A. van Doorn // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 24 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2010 Mathematics Subject Classification: 42C05; 60J80; 44A60
dc.identifier.other DOI:10.3842/SIGMA.2016.049
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147745
dc.description.abstract This paper aims to clarify certain aspects of the relations between birth-death processes, measures solving a Stieltjes moment problem, and sets of parameters defining polynomial sequences that are orthogonal with respect to such a measure. Besides giving an overview of the basic features of these relations, revealed to a large extent by Karlin and McGregor, we investigate a duality concept for birth-death processes introduced by Karlin and McGregor and its interpretation in the context of shell polynomials and the corresponding orthogonal polynomials. This interpretation leads to increased insight in duality, while it suggests a modification of the concept of similarity for birth-death processes. uk_UA
dc.description.sponsorship This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title Shell Polynomials and Dual Birth-Death Processes uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис