Показати простий запис статті
dc.contributor.author |
Sabau, S.V. |
|
dc.date.accessioned |
2019-02-15T18:53:04Z |
|
dc.date.available |
2019-02-15T18:53:04Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions / S.V. Sabau // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 12 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 53C60; 53C22 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.036 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147734 |
|
dc.description.abstract |
We show that the co-rays to a ray in a complete non-compact Finsler manifold contain geodesic segments to upper level sets of Busemann functions. Moreover, we characterise the co-point set to a ray as the cut locus of such level sets. The structure theorem of the co-point set on a surface, namely that is a local tree, and other properties follow immediately from the known results about the cut locus. We point out that some of our findings, in special the relation of co-point set to the upper lever sets, are new even for Riemannian manifolds. |
uk_UA |
dc.description.sponsorship |
I am grateful to Professor M. Tanaka for bringing this topic into my attention and for many
illuminating discussions. I am also deeply indebted to the anonymous referees for their constructive
criticism and extremely useful suggestions that improved the manuscript enormously.
Also I thank to N. Boonnam for reading an early version of the paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
The Co-Points of Rays are Cut Points of Upper Level Sets for Busemann Functions |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті