Показати простий запис статті
dc.contributor.author |
Dunkl, C.F. |
|
dc.date.accessioned |
2019-02-15T18:51:39Z |
|
dc.date.available |
2019-02-15T18:51:39Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 14 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 33C52; 42B10; 20C30; 46G10; 35F35 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.033 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147731 |
|
dc.description.abstract |
For each irreducible module of the symmetric group on N objects there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to certain Hermitian forms. These polynomials were studied by the author and J.-G. Luque using a Yang-Baxter graph technique. This paper constructs a matrix-valued measure on the N-torus for which the polynomials are mutually orthogonal. The construction uses Fourier analysis techniques. Recursion relations for the Fourier-Stieltjes coefficients of the measure are established, and used to identify parameter values for which the construction fails. It is shown that the absolutely continuous part of the measure satisfies a first-order system of differential equations. |
uk_UA |
dc.description.sponsorship |
This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications.
The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті