Показати простий запис статті
dc.contributor.author |
Avohou, R.C. |
|
dc.date.accessioned |
2019-02-15T18:46:43Z |
|
dc.date.available |
2019-02-15T18:46:43Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs / R.C. Avohou // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 18 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 05C10; 57M15 |
|
dc.identifier.other |
DOI:10.3842/SIGMA.2016.030 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147726 |
|
dc.description.abstract |
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension D≥3 a modified Euler characteristic with D−2 parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank D weakly-colored stranded graphs. |
uk_UA |
dc.description.sponsorship |
Numerous discussions with Joseph Ben Geloun and Mahouton N. Hounkonnou have been hugely
beneficial for this work and gratefully acknowledged. The author acknowledges the support of
Max-Planck Institute for Gravitational Physics, Albert Einstein Institute, and the Association
pour la Promotion Scientifique de l’Afrique. The ICMPA is also in partnership with the Daniel
Iagolnitzer Foundation (DIF), France. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті