Показати простий запис статті
dc.contributor.author |
Martins, J.F. |
|
dc.contributor.author |
Mikovic, A. |
|
dc.date.accessioned |
2019-02-14T17:48:13Z |
|
dc.date.available |
2019-02-14T17:48:13Z |
|
dc.date.issued |
2011 |
|
dc.identifier.citation |
Four-Dimensional Spin Foam Perturbation Theory / J.F. Martins, A. Mikovic // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 27 назв. — англ. |
uk_UA |
dc.identifier.issn |
1815-0659 |
|
dc.identifier.other |
2010 Mathematics Subject Classification: 81T25; 81T45; 57R56 |
|
dc.identifier.other |
DOI: http://dx.doi.org/10.3842/SIGMA.2011.094 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/147406 |
|
dc.description.abstract |
We define a four-dimensional spin-foam perturbation theory for the BF-theory with a B∧B potential term defined for a compact semi-simple Lie group G on a compact orientable 4-manifold M. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group Uq(g) where g is the Lie algebra of G and q is a root of unity. The Chain-Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners Λ⊗Λ→A, where A is the adjoint representation of g, is 1-dimensional for each irrep Λ. We calculate the partition function Z in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold M. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that Z is an analytic continuation of the Crane-Yetter partition function. Furthermore, we relate Z to the partition function for the F∧F theory. |
uk_UA |
dc.description.sponsorship |
This work was partially supported FCT (Portugal) under the projects PTDC/MAT/099880/2008, PTDC/MAT/098770/2008, PTDC/MAT/101503/2008. This work was also partially supported by CMA/FCT/UNL, through the project PEst OE/MAT/UI0297/2011. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут математики НАН України |
uk_UA |
dc.relation.ispartof |
Symmetry, Integrability and Geometry: Methods and Applications |
|
dc.title |
Four-Dimensional Spin Foam Perturbation Theory |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті