Показати простий запис статті
| dc.contributor.author | 
Hijazi, O. | 
 | 
| dc.contributor.author | 
Raulot, S. | 
 | 
| dc.date.accessioned | 
2019-02-13T19:10:41Z | 
 | 
| dc.date.available | 
2019-02-13T19:10:41Z | 
 | 
| dc.date.issued | 
2007 | 
 | 
| dc.identifier.citation | 
Branson's Q-curvature in Riemannian and Spin Geometry / O. Hijazi, S. Raulot // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 23 назв. — англ. | 
uk_UA | 
| dc.identifier.issn | 
1815-0659 | 
 | 
| dc.identifier.other | 
2000 Mathematics Subject Classification: 53C20; 53C27; 58J50 | 
 | 
| dc.identifier.uri | 
http://dspace.nbuv.gov.ua/handle/123456789/147214 | 
 | 
| dc.description.abstract | 
On a closed n-dimensional manifold, n ≥ 5, we compare the three basic conformally covariant operators: the Paneitz-Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's Q-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's Q-curvature. Equality cases are also characterized. | 
uk_UA | 
| dc.description.sponsorship | 
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. We would like to thank the referees for their careful reading and suggestions. | 
uk_UA | 
| dc.language.iso | 
en | 
uk_UA | 
| dc.publisher | 
Інститут математики НАН України | 
uk_UA | 
| dc.relation.ispartof | 
Symmetry, Integrability and Geometry: Methods and Applications | 
 | 
| dc.title | 
Branson's Q-curvature in Riemannian and Spin Geometry | 
uk_UA | 
| dc.type | 
Article | 
uk_UA | 
| dc.status | 
published earlier | 
uk_UA | 
             
        
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті