Показати простий запис статті

dc.contributor.author Labbi, M.L.
dc.date.accessioned 2019-02-13T19:06:09Z
dc.date.available 2019-02-13T19:06:09Z
dc.date.issued 2007
dc.identifier.citation On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. uk_UA
dc.identifier.issn 1815-0659
dc.identifier.other 2000 Mathematics Subject Classification: 53C20; 53C25
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/147209
dc.description.abstract The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds. uk_UA
dc.description.sponsorship This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The author would like to thank the referees for useful comments and especially for indicating me the related work of Patterson. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут математики НАН України uk_UA
dc.relation.ispartof Symmetry, Integrability and Geometry: Methods and Applications
dc.title On Gauss-Bonnet Curvatures uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис